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The kinematical theory of X-ray diffraction by hcc crystals with growth and deformation faults is 
developed. The intensity distribution in reciprocal space is derived as a function of five parameters 
which represent three growth and two deformation fault probabilities. Only reflexions with H -  K¢  3N, 
N an integer, are affected by faulting and generally exhibit changes in integrated intensity and broaden- 
ing. In addition, reflexions with L= 6M+ 1 and 6M+ 2, M an integer, exhibit profile peak shift and 
profile asymmetry. It is shown that nine independent combinations of the five fault probabilities can 
be determined from the measured profile characteristics. 

Introduction 

X-ray diffraction from faulted close-packed crystals 
with a range of influence equal to 2, i.e., h and c crys- 
tals [Jagodzinski (1949a) configurational symbols for 
h.c.p, and f.c.c, crystals respectively] has been con- 
sidered by several authors. Wilson (1942) and Henri- 
ricks & Teller (1942) considered the case of growth 
faults while Patterson (1952) and Christian (1954) have 
considered deformation faults. (A growth fault arises 
when during the layer-by-layer growth of a crystal, the 
stacking rule is not obeyed in adding one new layer, but 
is otherwise obeyed throughout the crystal, while a de- 
formation fault arises through the process of glide of 
one part of the crystal with respect to the remainder.) 
A general treatment for h and c crystals containing 
growth and deformation faults simultaneously has 
been given by Gevers (1954). Effects of extrinsic faults 
for h and c crystals have been found by Lele, Anan- 
tharaman & Johnson (1967) and Johnson (1963) re- 
spectively. (For h and c crystals, an extrinsic fault arises 
through the insertion of a close-packed layer.) Alterna- 
tive treatments for extrinsic faults in h crystals and for 
deformation and extrinsic faults in c crystals have been 
given by Holloway (1969), Warren & Warekois (1955) 
and Warren (1963) respectively. The work has been re- 
viewed by Warren (1959) and Wagner (1966). 

crystals has been considered by Jagodzinski (1949b) for 
two types of growth faults and by Gevers (1954) and 
Lele, Prasad & Anantharaman (1969) for deformation 
faults. Prasad & Lele (1971) have given a comprehen- 
sive treatment for a total of nine types of fault (in- 
cluding the above three types). 

There are three close-packed crystal structures with a 
range of influence equal to 4, namely hcc, hhc (sam- 
arium type) and hhcc structures. Gevers (1954) has 
given a general treatment for crystals of these three 
types containing growth faults as also for one type of 
deformation fault in hcc crystals. The object of the 
present paper is to complement the work on hcc crys- 
tals by carrying out the calculations to a stage where 
the fault probabilities are directly related to the experi- 
mentally observable diffraction effects. Further, unlike 
Gevers, we distinguish between deformation faults 
occurring between an hh, hc and cc pair of layers as 
they lead to configurations which are not equivalent 
energetically. 

The hcc structure can be considered as a layer struc- 
ture produced by the regular stacking of close-packed 
layers in the sequence ABCACB, A where the letters A, 
B and C denote the three possible positions of the close- 
packed layers and the comma marks the completion of 
the repeat period (unit cell). The geometrical structure 
factors for different H,K,L are given in Table 1. A 

X-ray diffraction from faulted close-packed crystals different notation (Nabarro, 1967) for the growth and 
with a range of influence equal to 3, i.e., hc (d.h.c.p.)_~ [deformation faults, virtual processes for their forma- 
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tion and stacking sequences containing the faults 
(indicated by vertical bar) are given in Table 2. The 
following calculations have been made under assump- 
tions usual in this type of work (see e.g., Prasad & 
Lele, 1971). 

Table 1. S t ruc ture  f a c t o r s  f o r  hcc crys ta ls  

IFI 
L 6M 6 M _ + I  6M_+2  6M_+3 

H - K  
3N 6f  0 0 0 
3N + 1 0 V3f  3 f  l/3f 

D i f f r a c t i o n  f r o m  f a u l t e d  c r y s t a l s  

Following Warren (1959), the diffracted intensity is 
given by 

/(h3)= ~ 2 ~ (exp [iqbm] ) exp [2rcimh3/6] (1) 
In 

where 
qgm=(2rc/3) ( n -  K)qm , (2) 

q,, being a stochastic variate equal to 0, 1 or 2 respec- 
tively according as the m layer is A, B or C when the 
origin layer is A. Values of qm for B and C layers at the 
origin can be obtained by cyclic permutation. It can be 
shown that 

(exp [ i ~ m ] ) = C ~ "  (3) 

where 0 is a solution of the so-called characteristic 
equation and C can be obtained from the initial condi- 
tions. Characteristic equations for growth as also de- 
formation faults have been obtained by Gevers [1954; 
equations (12) and (28)]. Omitting terms with squares 
and higher powers of the fault probabilities as also their 
cross products, combining the two equations and 
distinguishing between the two types of deformation 
fault, we have for the characteristic equation: 

0" + ~ 0  s + ~z~,O 2 + ~,~0 - (1 - 2o~, - 2~,~ - 2o~ 

-6~,~c-3e3n)=O for ~ ' s ~ l ,  (4) 

where ~.~ is the probability of the occurrence of faults 

of type x (Table 2). For convenience, the relationship 
to Gevers notation is given below: 

~l, --+ 1 - -  ~1 = 1 - -  ~2 ; ~h¢c --+ f l  
~nc --+ 1 - (x 3 ; ~3h ---> 

0~ c ~ 0~ 4 . 

Solutions of equation (4) may be expressed in the 
following form: 

0v=Zvexp(-2zci)(-~- + X.) v = 0 t o 5 ,  (5) 

where Zv and X~ are real and are given by 

Zo = 1 - l o ~  - ½ % -  ½ ~ -  ~n~c-  ½~zn ; 3(0 = 0 

l'/3 (ahc + ~h - c~) X1 = 24z~ 

z 2 =  1 - ¼ ~ -  ¼~.-  ¼.~- .~cc-  ½.3h; 

X z -  ¢3 
24~ (~nc- C~h- ~c) 

Z3 = 1 - (-~)~c ~ ~ - ~ - ( ~ ) ~ - ~ h ~ - ½ c ~ 3 . ,  X3=O 

Z 4 = Z 2 ;  X 4 = - - z ~  2 

Z s =  ZI  ; X s =  - Xx . (6) 

As mentioned earlier the Cv's can be found from the 
initial conditions. These, found by direct evaluation 
from all possible stacking sequences of six layers, are 
given below: 

(exp i~0)= 1 

(exp icb~) = -½ 

(exp iqb2)= 1 -q-6~31,) 

(exp iq~3) = - -~(2anr + an - 2c~ + 3a3h) 

(exp i~4) = -~(4a~c- 4~1,- ~-c + 6~cc)  

(exp iq~s) = - ½(1 - 3an - 2a~- 4~hr~- 2cq,). (7) 

Substituting from equations (5), (6) and (7) in equation 
(3) and solving the resultant set of six simultaneous 
equations for the Cv's, we have 

Fault 

Growth 

Table 2. S t a c k i n g  f a u l t s  in hcc crys ta ls  

Notation Process of formation 

hc Removal of 1 layer + glide 

Removal of 2 layers + glide 

Insertion of 1 layer+glide 

Deformation hcc Glide 

3h Glide 

Stackingsequence 
c c h c  h c c h  
B A B C I B A C A  

h c c h  h c c h  
C B A B  I A C B C  

c h c c  c h c c  
A B C A  I B A C B  

c c h c  h c c c  
B A B C  I B A C B  

h c c h  h h h c  
C B A B I A B A C  
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Co=O 

i 3~ah)} 1/73 (~h~+C~+ 30Cn~c-- 

c~= ¼ { 1 - k~c-  ~ + ] ~ -  ½~ 

i } 
4 [/3 (3~3~- 4C%c + 4cq~) 

C3=½{1 +½C~nc+¼~-½~+~nc¢-4-~3n} (8) 

c . = c ;  
G = c ;  

where * denotes complex conjugation. 
Substituting from equations (3) and (5) in (1), we 

have on simplification 

i ~  ~ [c~ ~ ~,° cos ~m (~ ~ )  
-Cu ~ Z["sin2nlml (ha - ~ - X I  )] 

m 

+ ~ , [ ~  ~ ,  cos~m (~3 ~o ~) 

+~2 [~ ~ ~,~, cos ~m (-~-~ -~)] 
+~,2 [~ ~ ~,, cos ~m (~-~+x~) 
+C2,~Z~"'sin2~[m[(~--~+X2)] 

+~2[Cx,~z[mlcos2nm(h3--~+X~) 
m 

+Cu ~ Zlml sin 2nlml (-hL --s + xx ) ] (9) 
m 

where C~ and C~ are the real and imaginary parts of 
C~ and are given by 

1 C~r=½(C~+C*); C~,= ~t (C~-C*) v=1,2. (10) 

Performing the summations in equation (9), we have 

I(h3) = ~u2C~, 

1-Z~-2(CldC1,)Zl sin 2n (~- - k -X~  ) 
X 

1 +Z~-2Z1  cos 2n ( h3- -~ -X1)  

+ 9'2C2,. 

(~ ,. x2) 1 - Z~ - 2(CzJCz,)Z2 sin 2n 
× 

~ + ~ _ ~ c o s ~ ( ~  ~o x~) 

1 - Z  2 
+ ~u2C3. 

1 +Z~-2Z3  cos 2n I~--~3 - {  ) 

+ ~'2C2, 

1--Z~ ÷ 2(C2dC2r)Z2 sin 27c (~- - ~ + X 2 )  

x 

+ ~,2C1, 

1-ZZ + 2(Cu/C1,)Zl sin 2n ( h3- -~+ X 0 
> 

(11) 

Description of diffraction effects 

Reflexions with H-K=3N, L=6M, M and N 
integers, remain sharp. For reflexions with H-K= 
3N+ 1, the first, second, third, fourth and fifth terms 
on the right-hand side of equation (11) give rise to 
broadened peaks corresponding to L = 6M + 1, 6M+ 2, 
6M+3, 6M+4 and 6M+5 respectively. In general, 
there are changes in integrated intensity and profile 
broadening for all reflexions. Further, except for re- 
flexions with L = 6M + 3, all reflexions show profile 
peak shift and profile asymmetry. These effects can 
be utilized for estimating fault probabilities. Quanti- 
tative expressions for these profile characteristic are 
given below. 

Profile integrated intensity 
The integrated intensities T1, T2 and/'3 in reciprocal 

space for reflexions with L = 6 M +  1, 6M+2 and 
6M+3 respectively can be obtained by integrating 
separately the terms on the right-hand side of equation 
(11). The fractional changes in the ratios R21 and R3~ 
of the integrated intensities Tz, T~ and T3, T~ are given 
by 

AR2JRn= -- ~(2~hc + 7~h-- 2~c-- 12C~hcc) (12) 

AR31/R31=½(o~h¢--O~h--Occ+6O~hc¢+ 3~-3h) • (13) 

By experimental measurement of the quantities 
AR21/R21 and AR31/R3~ one obtains two different com- 
pound fault probabilities, that is, combinations of the 
fault probabilities. 

Profile peak shift 
For reflexions with L = 6M + 1 and 6M_+ 2, the peak 

shifts after conversion to 20 ° coordinates are given 
respectively by 

901/3 ILId 2 
A(20,,) °=+ n2 . c~ .  tanO(c%+~h-~c) 

for L=6M+I (14) 

A C 30A - 4 
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A(20m)o= ___ 901/3 lL ld  z 
nz . cZ . tan 0(c~hc- c~h- c~c) 

for L = 6 M + 2 .  (15) 

Profile peak shift measurements thus lead to estimates 
of two more compound fault probabilities. 

Profile integral breadth 

The integral breadth is defined as the ratio of the 
profile integrated intensity and the profile maximum. 
Considering each of the terms in equation (11) se- 
parately and converting to 20 ° coordinates we have 

90 ILld 2 
(fir)o_ n c ~ .  tan 0(5~h~ + 3C~h + 5C~ 

+12eh~+6e3h) for L = 6 M +  1 (16) 

(Be)g = __90. __lZld z 
n ca . tan O(3a~,~ + 3o~h + 3o~ 

+ 12c~hc~ + 6aah) for L = 6M_+ 2 (17) 

.(flj,)o= 90 ILId z c------y-, tan 0 ( 2 ~  + 6ah + 2a, 

+12ah**+6Cqh) for L = 6 M + 3 .  (18) 

Three additional compound fault parameters can, 
therefore, be obtained from measurements of (fly)0, 
(fl~,)2 o and (fls)°. 

Profile a symmet ry  

A simple measure of profile asymmetry is the shift 
of the centroid of a profile from its peak position. 
Following Cohen & Wagner (1962), we have from 
equation (9)" 

A(20c_m)o= + 301/3 ln2  
7c 2 . tan 0.  (4ea, + 4 ~  

+ 12~h~- 12~ah) for L = 6 M +  1 (19) 

A(20c_m)O= + 301/3 In 2 7g 2 . tan 0(3a3~- 47s,~ 

+ 4c~ah) for L = 6 M +  2.  (20) 

Thus, measurement of asymmetry leads to estimates of 
two more compound fault parameters. 

Discussion 

Independent estimates of a total of nine compound 
fault parameters can be obtained from measurements 
of the profile characteristics mentioned above. Since 
there are only five fault probabilities, we have an over- 
determined set of equations and, in principle, all five 
fault probabilities can be found. In practice, small 
domains and distortions may be present within the 
specimen in addition to stacking faults. In principle, 
the effects of distortions can be eliminated by the 
multiple-order technique of Warren and Averbach 
(Warren, 1959) while the effects of domain size may be 
separated by considering reflexions of the type H - K =  

3N which are not affected by faults (see, e.g., Anantha- 
raman, Rama Rao & Lele, 1972). However, second- 
order reflexions are, in general, too weak for reliable 
measurements. Further, for powder photographs, the 

m 

reflexions 0006 and 1120 (i.e. with H - K = 3 N )  are 
superimposed on the reflexions 10]2 and 10]8 (i.e. 
with H - K # 3 N )  respectively. In view of the above 
limitations in the available data, separation of strain 
and domain-size effects cannot be accomplished by 
rigorous methods for this structure. We outline below a 
method based on the assumption of isotropy of domain 
size and strain which may be utilized for separating the 
three effects. At the outset, we may mention that the 
further development is made on the basis of data 
being available for the reasonably intense reflexions 
10]'3, 10]'4, 10]'5 and 1017 which are well separated 
both from each other and from other reflexions. The 
broadening due to domain size (D) and strain (e) may 
be expressed as (Anantharaman et al., 1972) 

360 d t a n  0 
fl~]= --~-- • ----~ - (21) 

720 
rio_ .8 tan 0 . (22) 

n 

Following Halder & Wagner (1966), we may write for 
the total broadening fl as follows 

fl a + fl f = fl - -fi - . (23) 

Substituting from equations (21) and (22) in the above 
and dividing both sides by (360/n) d tan O, we have 

1 n f l  4 e 2 / d  2 

-D + F~(~)= - - .  360 d t a n 0  zc fl (24) 
_ _ _  • . . . .  

360 d t a n 0  

where F~(e) takes the values FI(e),.F2(e) and F3(e) for 
refiexions with L = 6M + 1, 6M + 2 and 6M + 3 respec- 
tively. The F~(e)'s are functions of the fault probabili- 
ties whose values may be found from equations (16) to 
(18). Introducing 

B 
f l*=  _~_~ • ___c_~ __ (25) 360 d t a n  0 

and rewritting equation (24) explicitly for each of the 
reflexions 10]3, 10]'4, 10]5 and 10]7 which we de- 
signate by the suffices 1, 2, 3 and 4 respectively, we 
obtain 

1 4e2/d~ (26) 

1 4e2/d~ (27) 
-25 + F2(oO=fl~ fl~ 

1 4e2/d~' (28) 
D + FI(~) =P; p; 

1 4e2/dl (29) 
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We first solve equations (28) and (29) for 8 and 
(1/D)+FI(e). The value of e is then substituted in 
equations (26) and (27) to yield estimates of ( I /D)+  
F3(e) and (1/O)+Fz(e). Eliminating (l/D) from each 
of the two pairs of equations, we can evaluate two 
independent combinations of Fl(e), F2(e) and Fa(e), 
say Fl (e) -F2(e)  and F2(c0-F3(e). These could then be 
utilized along with estimates of three other compound 
fault parameters obtained from other measurements, 
say profile peak shift and profile asymmetry for the 
10i4, 1015 and 10i7 reflexions to enable a complete 
evaluation of the fault probabilities to be made. 

The author is grateful to Professor E. Gebhardt for 
working facilities and to the Alexander von Humboldt  
Foundation for the award of a fellowship. 
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The distortion of an observed coordination polyhedron can be evaluated from a comparison of this 
polyhedron with the least-squares best-fit polyhedron with optimum location, orientation, size param- 
eters and prescribed symmetry. A set of atoms at positions, x(1) . . . .  x(n), may be fitted to the set 
y(1) . . . .  y(n) by rearranging the matrix equations: 

y(i)=t+R~(i)x(i) (i= 1,n) 

and solving for the unknown parameters of the translation vector, t, the rotation matrix, R, and the 
(diagonal) dilation matrices, 2(i), which optimize the fit between the two sets. The elements of the (one 
or more) dilation matrices may be constrained to fix the fitted set to the desired symmetry. The solution 
is effected by means of a two-stage iterative least-squares technique employing the so-called 'small- 
angle' rotation matrix. The average distance between corresponding atoms of the two sets, which is a 
minimum at the point of optimum fit, provides a unique one-parameter characterization of the degree 
of distortion between the two configurations. The magnitudes of the operations needed to produce the 
best fit are also recoverable from the least-squares solution. 

Introduction 

Coordination polyhedra observed in crystal structures 
are, more often than not, distorted to some degree 
from their ideal configurations. The extent of this dis- 
tortion is a significant crystal chemical parameter. It 
is, however, difficult to determine quantitatively. 
Several methods of characterizing such distortion have 
been suggested (see, e.g., Robinson, Gibbs & Ribbe, 
1971) and, in general, are measures of the spread of 

interatomic distances or angles about their means or 
ideal values. Undoubtedly such variation in bond 
length and angles does increase from undistorted to 
more distorted polyhedra. It is, however, not un- 
common to encounter real polyhedra, which are dis- 
torted from some ideal configuration, but yet have all 
bond lengths equal or all bond angles equal to those of 
the ideal configuration. Furthermore, it may be de- 
sirable to know the degree of distortion relative to a 
lower symmetry subgroup of the ideal configuration, 

A C 30.4, - 4* 


